Coordination Contracts, Evolution and Tools

L.Andrade, J.Gouveia, G.Koutsoukos
Oblog Software S.A.
Alameda Antonio Sergio 7-1A
2795 Linda-a-Velha, Portugal
{landrade, jgouveia, gkoutsoukos } @oblog.pt

Abstract

In this paper, we propose the adoption of coordination
contracts — a modeling primitive grounded on a formal
semantics based on the Category Theory — as a basis for
a discipline that effectively supports software evolution.
We give an overview of coordination contracts, present
examples of how they can support evolution, and describe
a development environment through which they can be
used in practice.

1. Introduction

No one can admittedly deny the fact that today we are
witnessing tremendous technological advances in a highly
competitive business environment. To the question
whether technology is forming business or vice-versa,
organisations are replying by integrating their business
and IT strategies, thus using technology to do business. As
a result, there is an increasing pressure for building
software systems that are able to cope with new
requirements imposed by both technological advances and
different business rules. Even worse, as a result of e-
economics, systems often have to be able to accommodate
changes in run-time, even performed directly by
customers. As a consequence, organisations are seeking
answers on how to conceive and develop systems that are
adaptive to change.

For better or for worse, organisations are looking for
solutions to this problem in the context of object-oriented
development techniques such as the UML, and
component-based frameworks such as COM and CORBA.
However, as explained in [1,2] experience has shown that
the benefits that object-oriented techniques have brought

Jose Luiz Fiadeiro
Department of Informatics
Faculty of Sciences, University of Lisbon
Campo Grande, 1700 Lisboa, Portugal
jose@fiadeiro.org

to software construction cannot be extended directly to
software evolution. Moreover, disciplines that, in theory,
support software evolution, in practice often fail to
provide a means for their implementation and,
unfortunately, end up being buried in the literature. As a
consequence, it is not surprising that existing tools that
intend to offer support for evolution are far from ideal.

In this paper, we propose the adoption of the
coordination contract modelling primitive presented in
[1,2,4], grounded on a formal semantics based on
Category Theory [2,4], as a basis for a discipline that can
lead to software systems that are adaptive to change. We
briefly discuss coordination contracts and we present
examples from banking and telecommunications on how
contracts can support software evolution. Moreover, we
present and discuss the scope, applicability and impact on
the development life-cycle of an environment that we have
been building for allowing coordination contracts to be
effectively used as a technology.

2. Coordination Contracts

As discussed in [1,2] the rationale for the definition of
coordination contracts is the realization that, in highly
volatile domains, one can distinguish between two
different kinds of entities as far as the evolution of the
application domain is concerned. On the one hand, there
are classes of objects that correspond to business entities
that are relatively stable in the sense that they capture core
concepts or “invariants” of the domain. On the other hand,
we need objects that have to keep changing in order for
the system to reflect the dynamics of the application

domain. These require a layer of coordination to be
established over the functionalities of the stable entities so
that the behavior that is required from the system can
emerge, at each state, from the interconnections that this
layer of coordination puts in place.

These coordination aspects need to be made available
explicitly in the system models so that they can be
changed, as a result of modifications occurring at the level
of requirements, without affecting the basic objects that
compose the system. The purpose of contracts is to
provide mechanisms for that layer of coordination to be
modeled and implemented in a compositional way.

In general terms, a coordination contract is a
connection that is established between a group of objects
where rules and constraints are superposed on the
behavior of the participants, thus enforcing a specific form
of interaction. From a static point of view, a contract
defines what in the UML is known as an association
class. However, the way interaction is established between
the partners is more powerful than what can be achieved
within the UML and similar OO languages because it
relies on the mechanism of superposition as developed for
parallel and distributed system design [5,6,8]. When a call
is made from a client object to a supplier object, the
contract “intercepts” the call and superposes whatever
forms of behavior it prescribes. In order to provide the
required levels of pluggability, neither the client, nor any
other object in the system, needs to know what kind of
coordination is being superposed. To enable that, a
contract design pattern, presented in [3,7], allows
coordination contracts to be superposed on given objects
in a system to coordinate their behavior without having to
modify the way the objects are implemented.

Coordination Contracts are currently supported by a
specification language called Oblog, but the underlying
technology is independent of the language. In Oblog
notation, a coordination contract is defined as follows:

contract class <name>

participants <list of partners>

constraints <the invariant the partners should satisfy>

attributes

operations

coordination <interaction with partners>

end class
The classes of objects that are related by the contract are
identified under participants. A contract may also specify
constraints that represent invariants defining in which
conditions instances from the participating classes may be
related by the contract, attributes and operations private to
the contract, and the prescription of the coordination

effects that will be superposed on the partners. Each
interaction under a coordination rule is of the form:

<name> when <trigger>

with <condition>

do <set of actions>

The name of the interaction is used for establishing an
overall coordination among the various interactions and
the contract’s own actions. The condition under “when”
establishes the trigger of the interaction. The trigger can
be a condition on the state of the participants, a request
for a particular service, or a signal received by one of the
participants. Several conditions can be placed in the
“when” clause using the keyword “AND”. If one of such
conditions is not satisfied, the contract is considered as
being “inactive” and, as a result, either the original code
of the trigger or another contract is executed. This
mechanism provides the ability for controlling which of
the contracts imposed on a component will be responsible
for coordinating it.

The “do” clause identifies the reactions to be
performed, usually in terms of actions of the partners and
some of the contracts own actions. When the trigger
corresponds to an operation, three types of actions may be
superposed on the execution of the operation:

1. before: to be performed before the operation
2. replace: to be performed instead of the operation
3. after: to be performed after the operation

In the case in which an object participates in multiple
contracts with the same trigger, the sequence of execution
for the before, replace and after clauses is shown in Figure
1. It should be noted that the semantics of contracts allow
for only one “replace” clause to be executed, thus
preventing the undesirable situation of having two
alternative actions for the same trigger. Furthermore, any
such replacement action must adhere to whatever
specification clauses apply to the operation (e.g. contracts
in the sense of Meyer [9] specifying pre- and post-
conditions). This ensures that the functionality of the
original operation, as advertised through its specification,
is preserved.

Figure 1. Execution of multiple contracts

The actions that are executed as part of the "do" clause
are called the synchronization set associated with the
trigger. The semantics of contracts require that this set be
executed atomically, guarded by the conjunction of the
guards of the individual actions together with the
conditions included in the "with" clause. Therefore, the
“with” clause puts further constraints on the execution of
the actions involved in the interaction. If any condition
under the “with” clause is not satisfied, an exception is
thrown as a result and none of the actions in the
Synchronization set is executed.

For a detailed description of coordination contracts and
their formal semantics, the reader is urged to consult [2,4].
In what follows we present an example from banking to
motivate the scope and solutions coordination contracts
can offer. Consider a world of bank accounts in which
clients can, as usual, make withdrawals. The object class
account is usually specified with an attribute balance and
a method withdrawal with parameter amount. In a typical
implementation one can assign the guard
Balance>=amount restricting this method to occur in
states in which the amount to be withdrawn can be
covered by the balance. However, as explained in [1]
assigning this guard to withdrawal can be seen as part of
the specification of a business requirement and not
necessarily of the functionality of a basic business entity
like account. Indeed, the circumstances under which a
withdrawal will be accepted can change from customer to
customer and, even for the same customer, from one
account to another depending on its type. As discussed in
[1] inheritance is not a good way of changing the guard in
order to model these different situations. Firstly,
inheritance views objects as white boxes in the sense that
adaptations like changes to guards are performed on the

internal structure of the objects, which from the evolution
point of view of is not desirable. Secondly, from the
business point of view, the adaptations that make sense
may be required on classes other than the ones in which
the restrictions were implemented. In our example, this is
the case when it is the type of client, and not the type of
account, that determines the nature of the guard that
applies to withdrawals. The reason the guard will end up
applied to withdrawal, and the specialisation to account,
is that, in the traditional clientship mode of interaction, the
code is placed on the supplier class. Therefore, it makes
more sense for business requirements of this sort to be
modeled explicitly outside the classes that model the basic
business entities, because they represent aspects of the
domain that are subject to frequent changes (evolution).
Our proposal is that guards like the one discussed above
should be modeled as coordination contracts that can be
established between clients and accounts. For instance,
consider the following contract that allows for using the
functionality of withdrawal to relax the situations in
which an account may be overdrawn.
contract VIP package

participants x : Account; y : Custamer;

constants QONST_VIP_BAIANCE: Integer;

attributes Credit : Integer;

constraints 2owns(x, y) =TRE

x.AverageBalance () >= CONST_VIP_BAIANCE;

coor di nati on

vp: when y.cal | s(x.wthdraval (z))
wth x.Balance() + Credit() > z;
do X. W t hdraval (z)

end contract

To further illustrate how contracts can be applied to
support the evolution of requirements we present a second
example from a telecommunications transaction
processing system. Consider the following specification of
an account from a telephone service provider. The main
purpose of the class is, simply, to charge the account
whenever a phone-call finishes. The other operations of
the class are, also, self-explanatory.

class Account
attributes
obj ect
tel nurber: Integer;
balance: Integer:=0;
charge rate: Integer;
operations
cl ass
*Create (client: Customer);
obj ect
?Balance() : Integer; // function, returns balance
Charge (call_time: Integer);
body
net hods

Char ge
is {
set balance:= Balance()+call time*charge rate;
Yend
end cl ass
A second class specification can be defined with the
purpose of modelling the phone calls that each client
makes. The operations specified here are used for
illustrative purposes. Therefore, they are limited to the
one that calculates the duration of a call and the one that
determines the end of a call.

class call
decl arations
attributes
obj ect
cal | er_nunier: I nt eger;
operations
cl ass
*Create (client: Customer);
obj ect
FnishGll();
?Ca cul ateCGl | Ti ne(): | nt eger;
body
net hods
H ni shGal |
is {
// body of finish call detects end of call
}end
Gl culateCGl | Ti ne
is {
// body- calculates the duration of the call
}end
end cl ass

In order to achieve the charging of the Account as soon
as the phone-call ends we have to consider two possible
scenarios, both related to the implementation of the two
components. Either the Account and Call components are
completely independent and are not aware of the existence
of each other, in which case a third component is needed
that becomes responsible for detecting the end of the
phone-call, calculate the duration and perform the charge
(Figure 2a), Or, Call is responsible for calling the
Charge() method, for instance inside the FinishCall()
method (Figure 2b). It should be clear that the latter
would be a “weak” implementation. Indeed, it is hardly
the role of a component that models phone-calls to charge
an Account. However, such implementations often exist in
real life applications. We argue that in the first scenario
the best choice is to have a contract as the third
component and that, in both cases, contracts provide a
very effective way to evolve the system without modifying
the existing components.

l Account. Chargeitime)

(k)

Account

.
|

(a)

Figure 2. (a) Components Independent, (b) Components
dependent

As far as the first scenario is concerned, the following
simple contract, Tradirional Charging, has the role of the
third component and provides the required functionality
while offering the advantage that the mechanism
(contract) that controls the usage of the given objects is
modelled as a first-class entity and, hence, can be evolved
independently of the other two.

contract class Traditional Charging
participants x : Account; y : Call;
constraints X. tel _nunier: =y. cal | er_nunioer;
coordi nati on
when *->>y. H ni shGil | ();
after
local time: Integer:= y.CalculateCallTime();
x. Char ge(tine);
ernd class
Consider now the situation in which the telephone
provider wants to have two types of customers and charge
them according to different rules. For instance, it could
charge important customers only after the call exceeds a
specific number of seconds, whereas not important
customers are charged for the whole duration of their
phone-call. If Account and Call are independent, i.e the
first scenario described above is in place, the solution is

simply to add to the system a contract like the one below.
contract class M P_Chargi ng
participants x : Account; y : Call;
attributes free cal |l _limt:Integer;
constraints Xx.tel _nunier: =y. cal | er_nunier;
coor di nati on
when *->>y. FH ni shGl | ();
after
local time: Integer:= y.CalculateCallTime();
if (time> free call limit) {
x.Charge (time - free call limit);

}
end class

The functionality of both the previous contracts is
straightforward. They coordinate the charging of the
Account according to the type of customer and the
business rules the network operator defined. Notice that if
a “*->>" is specified in the coordination part of the
contract, any call to the service triggers the rule and that
the keyword local just defines a local variable. If a future
business requirement determines different behaviour for
the components, a new contract, like the VIP_Charging
contract above, can be added to the system in a “plug and
play” mode in order to achieve the required behaviour.

Consider now the second scenario in which the two
components, Account and Call, are aware of the existence
of each other and that, in fact, an instance of a Call has to
invoke the Charge() method in order to perform the
charging of the customer’s account (possibly as soon as
the call ends). In this scenario, evolving the system to
comply with the new requirement of having different
charging schemes for different kinds of customers is not
possible without modifying the components. For instance,
consider the case in which inside FinishCall () there is a
statement of the form Account.Charge
(CalculateCallTime). Clearly, it is not possible to change
the charging mechanism without changing the source code
of either FinishCall() or Charge(). However, a contract
like the one below can achieve the required functionality
without having to modify the implementation of Call and
Account.

contract class VIP_Charging 2
participants x : Account; y : Call;
attributes free call _|imt:Integer;
constraints x. tel _nunber: =y. cal | er_nunfoer;
coor di nati on
when y->> x.Charge (time);
repl ace
if (time > free call limit) {
local newtime: Integer:= time-free call_limt;
x. Char ge(nevt i ne) ;
}
// implied “else” is void i.e. if time<free call time
// nothing is executed (it does not charge)
end class
A third scenario of evolution is the one in which we
have different charging schemes related to the charge rate.
For instance, a VIP Customer, can be charged with a
charge_rate_1 when the duration of the call is within a
time range [O-time_limit] and with a charge_rate_2 when
the duration of the call exceeds time_limit. Again the
following contract where the charging rates are decided
inside the contract can offer a very effective and flexible
solution.

contract class M P_Charging_3
participants x : Account; y : Call;
attributes charge rate 1, charge rate2, time limit
I nt eger;
constraints X. tel _nunier: =y. cal | er_nunier;
coordi nati on
when *->>y. H nishGl | ();
after
local time: Integer:= y.CalculateCallTime();
if (time <= time limit) {
charge rate:= charge ratel;
}

else if (time > time limit){

X. charge rate:= charge rate2;

x. Char ge(tine);

end class
It should be noted that there are a large number of
additional examples from different application domains
that show how contracts can externalize the interactions
between objects making them explicit in the conceptual
model and support the compositional evolution of
systems. Due to space limitations we will neither present
such examples, nor the contracts formal semantics and the
design pattern that puts them in practice. The reader can
consult [1,2,3,4,7], for more details. In what follows we
discuss how coordination contracts can be related to

software tools.

3. Coordination Contracts and Tools

Coordination contracts can be related to tools in two
ways: Firstly, in terms of tools that aim to apply
coordination contracts as an intermediate stage in the
development of larger systems and, secondly, in terms of
using contract-based development for building software
tools. The latter case draws from the realization that
software tools are often themselves complex systems that
are under constant evolution to cope with different
requirements. As a result, techniques, such as
coordination contracts, that aim to support software
evolution in general, are also directly applicable to such
tools. Therefore, it makes more sense to further discuss
the former case only.

The former case is concerned with building tools to put
in practice the concept of coordination contract. The
implementation of such tools normally involves the
following stages:

a adopting the concepts of contracts to re-engineer
components, in terms of making their functionality
independent of their interconnection, thus

Regist Components

Edit Contracts

............. > Contract Tegt :
Editor
v \ 4

CheckIn/CheckOut Animator

Build /
REPOSITORY
"""" P System
Builder

—>_>0100

Code Generation

Java Code

Figure 3. Coordination Contracts Tool Architecture

enabling externalization of volatile elements
(business rules).

b. having design/implementation techniques that
implement the contract concept in a way that
satisfies the necessary requirements to achieve
dynamic system evolution. The main technique is
using a Design Pattern like the one presented in
[3,7].

C. using a specification tool that will manage
contract development and automated
implementation of the pattern, by code
generation/adaptation.

d. using a configuration tool that will "deploy",
activating and deactivating, contracts.

Assuming implementation of the first stage, in other
words, assuming having components of a suitable form
either generated by a tool or coded by hand, we focus
on the coordination layer of such tools. The activities
of the development process that are supported by such
tools are the following:

* Regidtration: components are registered in the
tool.

e Edition: Contracts are defined connecting some
registered components. Coordination rules and
constraints are defined on those contracts.

e Deployment: the code necessary to implement
the coordinated components and the contract
semantics in the final system is produced by
generating some parts according to the contract
design pattern and adaptation of the given
component part.

¢ Animation: some facilities are provided allowing
testing/prototyping of contract semantics.

The logical architectural components, namely the
Editor, the Repository, the Builder and the Animator that
support the previous activities, are presented in Figure 3.

In this context, coordination contract tools may be
applied to different levels in system development
depending on several factors, such as the characteristics
of the components, the way components are built, the
development phase where the contract concept is going to
be used, among others. We illustrate this diversity with
two possible scenarios of using coordination contract
tools:

Model Coordination: Coordination is used at the
Analysis or Design phases. Components are model classes
(e.g. UML classes) and coordination contracts make a
Coordination Model on top of the Analysis/Design Model.
The deployment activity must take into account the way
final coded components are obtained from model
components and provide the necessary integration.

Construction Coordination: Coordination is used in the
Implementation phase. Components are the final coded
components of the basic building blocks of the system and
coordination contracts are defined directly over
implementation classes. It is suitable to be applied on the
evolution of an existing system.

We realize, however, that the type of components to
coordinate may define the context and capabilities in
which such a tool is used and that the specific language
and technical environment may impose constraints on the
coordination features that can be used, since techniques to
achieve the implementation of its semantics may not be
available. We intend to further discuss and provide
solutions for such issues in the future. However, to this
end, we strongly believe that coordination contracts, its
formal semantics that admits an implementation via
design patterns and a contracts’ development environment
form a very strong basis for Software Engineers and
developers to meet the challenge of designing and
developing systems (and tools) that are better structured,
consist of reusable parts, and are adaptive to change.

(1]

(2]

(3]

(4]

(9]
6]
(7]

References

L.F Andrade and J.Fiadeiro, “Evolution by Contract”,
position paper presented at the ECOOP'00 Workshop on
Object-Oriented Architectural Evolution.

L.F.Andrade and J.L.Fiadeiro, "Interconnecting Objects via
Contracts", in UML'99 — Beyond the Standard, R.France
and B.Rumpe (eds), LNCS 1723, Springer Verlag 1999,
566-583.

L.F.Andrade, J.L.Fiadeiro, J.Gouveia, A.Lopes and
M.Wermelinger, "Patterns for Coordination", in
Coordination Languages and Models, G.Catalin-Roman
and A.Porto (eds), LNCS 1906, Springer-Verlag 2000,
317-322.

L.Andrade and J.Fiadeiro, “Coordination: the evolutionary
dimension”, in Proc. TOOLS Europe 2001, Prentice-Hall,
in print.

K.Chandy and J.Misra, Parallel Program Design - A
Foundation, Addison-Wesley 1988.

N.Francez and I.Forman, Interacting Processes, Addison-
Wesley 1996.

J.Gouveia, G.Koutsoukos, L.Andrade and J.Fiadeiro, “Tool
Support for Coordination-Based Software Evolution”, in
Proc. TOOLS Europe 2001, Prentice-Hall, in print.

[8] S.Katz, "A Superimposition Control Construct for

Distributed Systems", in ACM TOPLAS 15, 1993 337-356

[9] B.Meyer, "Applying Design by Contract", in IEEE

Computer, Oct.1992, 40-51.

